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We investigate dispersive and kinetic effects on the evolution of a two-dimensional kinked Alfvén wave packet
by comparing results from MHD, Hall-MHD and hybrid simulations of a low-β plasma. We find that the Hall
term determines the overall evolution of the wave packet over a characteristic time τ∗ = τa`/di in both fluid
and hybrid models. Dispersion of the wave packet leads to the conversion of the wave energy into internal
plasma energy. When kinetic protons are considered, the proton internal energy increase has contributions
from both plasma compressions and phase space mixing. The latter occurs in the direction parallel to the
guiding mean magnetic field, due to protons resonating at the Alfvén speed with a compressible mode forced
by the wave packet. Implications of our results for switchbacks observations and solar wind energetics are
discussed.

I. INTRODUCTION

After E. Parker put forward the first theory of a super-
sonic solar wind30, it has become clear that a thermally
driven wind cannot reproduce the highest speeds mea-
sured in-situ, reaching values up to 750 − 800 km/15,35,
and that an additional source of energy is required to
explain both the heating of the solar corona and the ac-
celeration of high speed streams. Since the first obser-
vations in interplanetary space5, turbulence and waves
have been proposed as a mechanism to heat and acceler-
ate the solar wind plasma6. Alfvénic fluctuations indeed
represent the dominant contribution to solar wind turbu-
lence, especially, but not limited to, the fastest streams7.
Switchbacks are part of this turbulent flux continually
emitted by the sun and correspond to large amplitude
Alfvénic kinks of the magnetic field that lead to a lo-
cal magnetic field polarity reversal. Parker Solar Probe
(PSP) observations have shown that switchbacks are a
common feature of the Alfvénic wind, regardless of its
speed11,18.

What is the origin of switchbacks and what is their
role in solar wind dynamics and turbulence still remain
important open questions. On the one hand, it has
been proposed that switchbacks are an intrinsic part of
the evolving turbulence and that they form in-situ dy-
namically, driven by solar wind expansion or large scale
shear flows23,32,40. Alternatively, it has been argued that
switchbacks are kinked magnetic field lines resulting from
interchange reconnection in the corona. In the latter sce-
narios, switchbacks are considered as the outcome of pro-
cesses that may generate the wind itself10,36,44. An anal-
ysis of the occurrence rate of switchbacks as a function
of radial distance has shown that the probability to ob-
serve longer duration switchbacks increases with radial
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distance, while the probability to observe shorter dura-
tion switchbacks, shorter than a few tens of minutes, de-
creases. These observations suggest that the dynamics of
switchbacks is complex and scale dependent, and that dif-
ferent types of switchbacks may coexists — those formed
closer to the corona and that gradually decay or degrade
as they propagate out, and those formed in-situ as the
turbulence evolves with radial distance43.

An important property of Alfvénic fluctuations in the
solar wind, including switchbacks, is that they are charac-
terized by a nearly constant magnetic field amplitude24.
Large amplitude monochromatic or broadband magnetic
and velocity fluctuations correlated like Alfvén waves
are an exact solution — although unstable — to the
nonlinear compressible Magnetohydrodynamic (MHD)
model, provided the total magnetic field magnitude is
also constant8,9,41. In previous work, we showed via
MHD simulations that the parametric instability leads
to the disruption of an Alfvén wave packet similar to
a switchback over a timescale that can reach up to a
few hundreds of Alfvén times42. Those results support
the idea that some of the observed switchbacks may be
formed back in the corona and then propagate out to
distances of a few tens of solar radii, before eventually
decaying. On the other hand, switchbacks occur over a
wide range of scales. They can be as long as several hours
(MHD scales), and as short as a few seconds, approaching
the proton cyclotron period. Switchbacks can therefore
be affected also by dispersion and other kinetic effects
faster than expansion and MHD processes, like the para-
metric decay instability mentioned above. Wave activity
at the scale of a few seconds at switchback boundaries
and degraded switchbacks with signatures of magnetic
holes have been reported during the first encounter of
PSP12. Emission of dispersive waves can thus provide
another channel for switchbacks’ evolution and disrup-
tion. The goal of this work is to determine how and
on what timescales dispersion and wave-particle interac-
tions affect the dynamics of Alfvénic wave packets such
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TABLE I. Summary of the simulation runs, where `x is the
longitudinal length of the wave packet, di the proton inertial
length, τa = B0x/

√
4πρ0 and τ∗ = τa`x/di.

(Lx × Ly)/`x `x/di β τ∗/τa
run 0 (MHD)

33.5× 8.37

∞

0.5

∞
run 3 (Hall) 150 150
run 1 (Hall) 30 30
run 2a (Hall) 6 6

run 2b (hybrid) 34.13× 8.53 6 βp,e = 0.25 6

as switchbacks.
It is known that broadband Alfvénic fluctuations are

no longer an exact solution to the Hall-MHD model due
to dispersion. Exact nonlinear solutions to the Hall-MHD
system still exist, but in the form of monochromatic right
or left-handed circularly polarized waves17,33. Nonlin-
ear Alfvénic solutions to reduced equations, namely, the
DNLS (derivative nonlinear Schrödinger) equation, have
also been found in the form of one-dimensional solitary
wave-packets with a modulated envelope27,38,39. The ef-
fect of dispersion on large amplitude Alfvénic fluctuations
in plane geometry has been investigated extensively in
the past1,3,4,14,17,25,37 but, to the best of our knowledge,
never for a two-dimensional wave packet such as the one
considered here.

In this work we consider a two-dimensional Alfvén
wave packet with constant magnetic and thermal pres-
sure in quasi-parallel propagation and investigate the role
of dispersive and kinetic effects on its dynamics by com-
paring results from MHD, Hall-MHD and hybrid simula-
tions. In section II we describe the numerical models used
and the initial conditions for our simulations. Results
are reported in Section III. We discuss the implications
of our results on switchbacks lifetime and observations in
Section IV and we provide a summary in Section V.

II. NUMERICAL MODELS

We make use of a 2.5D numerical code (two-
dimensional domain and three-dimensional vectors) that
integrates the full set of compressible Hall-MHD equa-
tions in conservative form, where an adiabatic clo-
sure is assumed34. The code adopts periodic bound-
ary conditions and derivatives are calculated via the
Fast Fourier Transform. An explicit third-order Runge-
Kutta method is used for the time integration and the
Courant–Friedrichs–Lew condition is used to determine
the appropriate time step. We do not impose explicit re-
sistivity and use instead a pseudo-spectral filter to avoid
energy accumulation at the grid-scale.

Simulations are initialized with a two-dimensional an-
alytical model for a switchback as discussed in Landi et
al. 22 and Tenerani et al. 42 . The magnetic field is de-
fined starting from the two-dimensional magnetic scalar

potential ψ(x, y),

B = ∇× ψ(x, y)ẑ +Bz(x, y)ẑ +Bx0x̂, (1)

where

ψ(x, y) = −ψ0

(
e−r

2
1 − e−r

2
2

)
, (2)

r21,2 =

(
x− x1,2
`x

)2

+

(
y − y1,2
`y

)2

. (3)

The component Bz of the magnetic field is then de-
termined by imposing a constant total magnetic field
strength B,

Bz(x, y)2 = B2 − [Bx(x, y)2 +By(x, y)2]. (4)

The velocity fluctuation δu follows directly from the
Alfvénicity condition, δu = −δB/

√
4πρ0, δB being the

fluctuating magnetic field31,42.
The setup described above corresponds to a wave-

packet similar to a switchback localized in the (x, y)
plane, with initial constant magnetic field strength, that
propagates in a homogeneous plasma with density ρ0,
pressure p0, and guiding mean field B0x that we take in
the x̂ direction. Lengths are normalized to a reference
length L, the magnetic field to B0x, density to the back-
ground density ρ0, speed to the corresponding Alfvén
speed. In these units, the wave packet has length `x =
1.5, width `y = 1, and we set |x1 − x2| = |y1 − y2| = 2.
We have considered three Hall-MHD cases, each corre-
sponding to a different value of the normalized proton
inertial length, di = 0.25, 0.05, 0.01 (where di = va/Ωci,
with Ωci = eB0x/(mic) and va = Bx0/

√
4πρ0), and one

MHD case (di = 0). Decreasing di allows us to increase
the scale separation between the typical length of the
wave packet and dispersive scales. In all of the runs the
plasma beta β = 8πp0/B

2
0x is set to β = 0.5 and the

mesh resolution is ∆x = ∆y = 0.1 with a domain size
of Lx × Ly = (8 × 2)2π. The mesh resolution has been
chosen to well resolve the dynamical evolution of system.
A summary of the numerical parameters used is reported
in Table I.

The analytical form of the magnetic field given in
eq. (1)-(4) includes a finite mean magnetic field B0z in
the z-direction, which is required to maintain a constant
magnetic field strength and whose magnitude depends
on the amplitude of the fluctuation ψ0. The mean field
B0z mimics self-consistently the Parker spiral magnetic
field (at a fixed angle). We therefore consider a small
but finite amplitude fluctuation, ψ0 = 0.25, which allows
us to simulate an Alfvénic wave-packet propagating at
an angle θ = arctan(Bz0/Bx0) = 0.61 (θ ' 35◦). The
corresponding minimum value of the longitudinal field

Bx is B
(min)
x = 0.76. A larger value for ψ0 leading to

a longitudinal field reversal with Bx . 0 would require
a larger propagation angle, which strongly affects dis-
persion properties and would make a comparison with
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observations difficult. The amplitude of the fluctuations
may also affect parametric instabilities. Here we have
chosen the parameters so that the Alfvén wave-packet
is in quasi-parallel propagation and stable in the MHD
limit. This allows us to focus solely on dispersive effects.

To investigate proton kinetic effects, we performed
2.5D (2D 3V for particles) simulations with the hybrid
code CAMELIA (see, e.g., Franci et al. 13) in which elec-
trons are described as a massless isothermal fluid. The
hybrid code is periodic, and it uses the current advance
method26 and Boris scheme for the particle pusher. Ex-
plicit resistivity (η = 0.001 in units of 4π/cvaω

−1
pi , where

ωpi =
√

4πne2/mi) has been added to improve conser-
vation of energy by avoiding the formation of magnetic
fluctuations at the grid scale. In the hybrid code, lengths
are normalized to di and time to the inverse of the proton
gyrofrequency Ωci. We impose the same initial condition
as in the Hall-MHD simulations, an initial Maxwellian
proton distribution and `x/di ' 6, so that the hybrid
simulation can be compared with run 2a. We use 2000
particles-per-cell, a mesh resolution of ∆x = ∆y = 0.2di
and a domain size of Lx × Ly = (204.8× 51.2)di. In the
hybrid simulation energy is conserved within 0.016% and
in the fluid code within 6 × 10−7%. A summary of the
numerical parameters is reported in Table I. Both fluid
and hybrid simulations are performed in a frame moving
with the wave-packet at the Alfvén speed va.

III. RESULTS

A. Fluid model

In Fig. 1 and Fig. 2 we report the overview of the evo-
lution of the system for the Hall-MHD and MHD simu-
lations. Figure 1 displays the variances of the magnetic
and velocity fields (top and second panels, respectively),
the root-mean-square (rms) of density fluctuations (third
panel) and the evolution of the internal energy (bottom
panel) as a function of time in units of the Alfvén time
τa = `x/va. The MHD simulation (di = 0, red color) re-
mains nearly stationary. The slight decrease in the vari-
ances of magnetic and velocity fields is due to a contin-
uous, slow growth of compressible fluctuations. Such a
compressible fluctuations are expected to grow at a slow
rate due to parametric instabilities, however, they remain
negligible over the time interval considered, reaching a
maximum value of δρrms/ρ0 = 0.003. The wave packet
is thus not affected by the parametric instability in the
MHD limit, at least until time t = 600τa.

When dispersion is included, a decrease in the kinetic
and magnetic energy of the fluctuations is observed, to-
gether with an increase of the internal energy and of den-
sity fluctuations. In particular, the internal energy gain
matches the loss in kinetic and magnetic energy of the
wave packet, that is,

∆(< 1/2ρ|δu|2 + 1/2|δB|2 >) = −∆eT , (5)

FIG. 1. MHD and Hall-MHD runs. Variance of magnetic
and velocity fields (top and second panel), rms of density
fluctuations (third panel) and internal energy (bottom panel)
as a function of time in units of Alfvén time.

where ∆g = g(t) − g(0) and the internal energy is
eT = 3/2 < p >. Conversion of magnetic and bulk
kinetic energy into internal energy is due to the cou-
pling of the Alfvén wave packet to compressible modes,
which becomes stronger as `x/di decreases. As a con-
sequence, the largest internal energy gain (for the time
intervals considered) occurs in run 2a, where the internal
energy increases by ∆eT /eT (0) ' 0.2% when the wave
packet has undergone complete dispersion and has dis-
rupted, with ∆ < |δB|2 > / < |δB(0)|2 >' −40% and
∆ < ρ|δu|2 > / < ρ|δu(0)|2 >' −33%. Also the ampli-
tude of density fluctuations in run 2a are larger than in
the less dispersive cases, with a value of δρrms/ρ0 ' 0.04.
Although compressible fluctuations are generated in all
of our simulations, the wave packet does not display sig-
natures of instabilities, such as modulational instability,
even when dispersion is included. As it will be discussed
later, the evolution of the wave packet is determined pri-
marily by the Hall term in Ohm’s law.

Figure 2 shows the evolution of the fluctuations’ mag-
netic and kinetic energy density (blue and orange, respec-
tively) for the Hall-MHD simulations. We show, from top
to bottom, results for run 3, run 1 and run 2a as a func-
tion of time in units of Ω−1ci . For very small but finite
dispersion (run 3 and run 1) we find that magnetic and
kinetic energy remain in equipartition to a very good ap-
proximation, while an excess of kinetic energy is observed
in run 2a. In Fig. 3 we show the characteristic curves of
the magnetic field components Bx and By in the (t, x)
plane at y = Ly/2, for run 3 (top left panels), run 1 (top
right panels) and run 2a (bottom left panels). This set of
simulations shows that the evolution of the wave packet
is characterized by two stages marked by a characteris-
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FIG. 2. Hall-MHD runs. Fluctuations’ magnetic and kinetic
energy as a function of time in units of the inverse proton
gyrofrequency Ωci for run 3 (top panel), run 1 (middle panel)
and run 2a (bottom panel).

tic time τ∗ = τa`x/di. The origin of the time τ∗ will be
discussed in section IV A.

During the first stage t < τ∗, dispersive waves that
propagate ahead and behind the wave packet itself are
emitted. Dispersive waves are found in all the simula-
tions with dispersion, but their amplitude is negligible
for weak dispersion (run 1 and run 3). We analize these
emitted waves in Fig. 4, top panel, where we show the
same characteristic curves as in Fig. 3 for run 2a, but
for a shorter time interval. As a reference, we also show
the (t, x) characteristic curves of fast, slow and interme-
diate modes that match the emitted waves for this run.
We have identified those modes by calculating the phase
speed from the dispersion relation of the Hall-MHD sys-
tem for kdi . 1. Although the system does not evolve
through a nonlinear turbulent cascade, the magnetic en-
ergy spectrum (not reported here) shows that energy is
transferred to that range of scales during the time in-
terval t . 2.7τ∗ (or tΩci . 100). In particular, the
plotted curves correspond to phase speeds vf = ±1.65,
vs = −0.46 and vi = −0.8 at kdi = 0.87 in the plasma
rest frame. In addition to dispersive waves, two slow-
mode compressive wave packets localized in the (x, y)
plane are emitted in all of the simulations with finite dis-
persion. Such a compressible wave packets correspond
to localized structures, of about the size of the initial
Alfvén wave packet, comprising magnetic pressure deple-
tions and compressions anti-correlated with density fluc-
tuations, propagating along the guiding field (x direc-
tion) at nearly the slow mode speed (in the MHD limit
the slow mode speed for our parameters is vs = 0.5).
The two slow mode structures can be seen in Fig. 4, top
panel, in the form of a depletion and a bump of By, re-
spectively, moving at a speed of v1 ' 0.5 (blue dashed
line) and v2 ' 0.36 (black dashed line) in the plasma
rest frame. For the sake of illustration, Fig. 4, bottom
panel, shows the contour plot of By in the (x, y) plane
at t = 1.4τ∗. In this plot, the dispersive waves are vis-
ible in the (x, y) plane on the right of the wave-packet

(which lies at the center); the slow modes correspond to
the localized “blobs” lying on the left of the wave packet.
Slow mode wave packets propagate at similar speeds also
in run 1 and run 3, for which we estimated v1 ' 0.5 and
v2 ' 0.45 (not shown here).

The second stage starts at t ' τ∗, when the initial
Alfvén wave packet disperses by spreading out. During
the dispersion stage the kinetic and magnetic fluctua-
tions remain in quasi energy partition, particularly for
run 1 and run 3, as can be seen from Fig. 2. Because of
dispersion, large amplitude waves appear to propagate
from the trailing and leading edge of the wave packet
along the guiding field Bx0, as well as in the transverse
(y) direction. Dispersion leads to a significant reduction
of the longitudinal magnetic field δBx on a timescale that
ranges between 10τ∗ and 40τ∗. We find that in the higher
dispersion case (run 2a) the longitudinal magnetic field
has decreased by about 20% with respect to its initial
value at time t = 10τ∗, after which it remains station-
ary. Not surprisingly, when dispersion is weak (run 1 and
run 3) and energy is not lost into many wave modes, the
same 20% decrease occurs later, at time t = 40τ∗, and
the longitudinal fluctuation continues to slowly decrease
making the wave packet shallower with time.

In Section IV A we discuss a simple model to interpret
the evolution of the magnetic field over long time scales
when compressibility is negligible.

B. Hybrid model

In Fig. 5 we show the overview of the time evolution of
fluctuation’s kinetic and magnetic energy density, of the
density rms, and of the mean pressures for the hybrid run.
The system evolves in a way which is consistent with the
Hall-MHD runs shown in Fig. 1 and Fig. 2. In Fig. 3,
bottom right panel, we show the characteristic curves of
the magnetic field in the (t, x) plane at y = Ly/2 for a
comparison with the Hall-MHD model.

Although the hybrid simulation is qualitatively simi-
lar to the Hall-MHD simulations, there are a few differ-
ences. In the hybrid model we do not observe slow-mode
wave packets emitted at early times t < τ∗, and density
fluctuations are overall weaker, with δρrms/ρ0 ' 0.018.
Fast modes with positively correlated density and mag-
netic pressure perturbations are instead emitted within
a few tens of gyroperiods. Such a fast mode perturba-
tions are generated within the Alfvén wave packet, forced
by magnetic pressure imbalance induced by dispersive ef-
fects. Since the compressible mode is forced, a portion
of it remains stuck to the Alfvén wave packet propa-
gating at the Alfvén speed, and a portion of it propa-
gates ahead and behind the wave packet at a velocity of
about vf ' ±1.35va (in the plasma rest frame). The
fast modes can be seen in the top two panels of Fig. 6,
where we show the contour plots of < ρ(x, t) >y and
< |B(x, t)| >y, averaged over the y coordinate to reduce
noise in the density. The forward fast mode is clearly
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FIG. 3. Characteristic curves of the magnetic field in the (t, x) plane at y = Ly/2. Top panels: contour plot of Bx. Bottom
panels: contour plot of By. From left to right, top to bottom, results for run 3, run 1, run 2a and run 2b are shown. Time is
normalized to the characteristic time τ∗ and length to `x. Only a portion of the spatial domain is shown.

visible in both density and magnetic field magnitude con-
tour plots. The backward fast mode is of smaller ampli-
tude and is not visible in the density contour. The fast
mode perturbations and the corresponding signature in
the electric field are shown in the third panel of Fig. 6,
where we plot the fluctuation of density and magnetic
field strength, < δρ(x) >y and < δ|B(x)| >y, respec-
tively, and of the electric field < ex(x) >y as a function
of x at time tΩci = 30 (t = 0.83τ∗).

After time t = τ∗, the evolution is consistent with the
Hall-MHD simulations. However, in the hybrid model
δBx persists longer than in its Hall-MHD counterpart
(cfr. Fig. 3, bottom right panels, which correspond to
the hybrid simulation, and bottom left panels, which cor-
respond to the Hall-MHD run 2a). We ascribe the per-
sistence of the wave packet over longer timescales to the
fact the in the hybrid model less energy is lost initially
into different types of dispersive waves.

The field-aligned mean proton pressures, < pxx > and
< pzz > shown in the bottom panel of Fig. 5, tend to in-
crease as the wave packet disperses, just like in the fluid
simulations. The increase in proton internal energy is de-

termined by < pxx >, which changes by ∆pxx/pxx(0) =
0.2% in a time interval ∆t = 2000Ω−1ci , comparable to the
relative change of internal energy in run 2a in the same
time interval (which is ∆eT /eT (0) ' 0.14%). While in
the fluid models the gain in internal energy is due to
compressions of the plasma, in the hybrid model contri-
butions from both compressions and phase space mixing
determine the changes in internal energy of protons. The
corresponding signature of proton heating in phase space
is reported in Fig. 7. The top panel shows the variation
δf of the spatially averaged proton distribution function
< δf(x, v‖, v⊥, t) >x at tΩci = 2000 (t = 55τ∗). The
bottom panel shows the averaged distribution function
< f(x,v, t) >x,vy,vz as a function of vx at t = 0 and at
tΩci = 2000. It is interesting to see that < δf > displays
a clear structure in velocity space at the Alfvén speed,
resulting in the small shoulder in < f(vx) > at vx > va.
Such a signature starts to emerge in phase space at time
tΩci = 50 (t = 1.38τ∗). At that time < pxx > has
reached its highest increase rate, and density rms and
electric field their highest decrease rate. This suggests
that a wave-particle resonance exists with the fast mode
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FIG. 4. Hall-MHD run 2a. Top panel: contour plot of By

in the (t, x) plane at y = Ly/2. Dashed lines represent fast
forward and backward (f+ and f−) modes, the backward in-
termediate (I-) mode and backward slow mode (s-). Two com-
pressible wave packets of the slow mode type are also emitted
and denoted as s1 and s2. Time is normalized to the charac-
teristic time τ∗ and length to `x. Bottom panel: contour plot
of By in the (x, y) plane at t = 1.4τ∗

forced initially and discussed above. Proton resonance is
however not sufficient to damp entirely density fluctua-
tions. In Sec. IV we provide a rough estimate to compare
the increase of internal energy found in our simulations
with the one inferred from observations.

IV. DISCUSSION

A. The Hall effect on Alfvén wave packets

In order to interpret our simulation results, let us as-
sume that Alfvénicity (δu = ±δB/

√
4πρ0) is conserved

and that compressibility (thermal and magnetic) remains

FIG. 5. Hybrid run 2b: time evolution of the magnetic and ki-
netic energy density of fluctuations (top panel), of the density
rms (middle panel) and the diagonal mean pressures (bottom
panel).

negligible for weak dispersion, two conditions that are
satisfied in run 1 and run 3. In this case, the motional
electric field contributes to the propagation of the wave
packet at the Alfvén speed, and departures from the
MHD exact solution are determined only by the Hall
term in Ohm’s law. By neglecting the u×B term while
retaining the Hall term, the induction equation in a two-
dimensional system can be cast into the following set of
equations for the magnetic potential ψ and the out-of-
plane component Bz of the magnetic field:

∂ψ

∂t
= −diB ·∇Bz (6)

∂Bz

∂t
= diB ·∇∇2ψ, (7)

where we have normalized the magnetic field to Bx0,
lengths to an arbitrary length L, density to a reference
ρ0, and we have approximated ρ ' ρ0. Equations (6)-(7)
introduce a characteristic time τ∗. If the wave packet
is nearly isotropic, as in the case considered here, τ∗ ∼
τa`x/di. If the wave-packet is highly anisotropic then
the timescale will be determined by the shortest time
τ∗x,y ∼ τa`x,y/di. When equations (6)-(7) are linearized,
they can be recast into an harmonic oscillator equation
in Fourier space for the Fourier components ψ̃(t,k),

∂2

∂t2
ψ̃(t,k) = −ω2

hψ̃(t,k), (8)

with ω2
h = d2i |kx|2|k|2 (in our normalization). The am-

plitude of each Fourier mode is a periodic function of
time, with a periodicity that depends on k and di. In gen-
eral, the solution for a non-monochromatic wave packet
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FIG. 6. Hybrid run. Top two panels: characteristic curves
of < ρ(x, t) >y and < |B(x, t)| >y, averaged over y. Dashed
lines indicate the forward and backward fast modes. Bottom
panel: fluctuation of the averaged density and magnetic field
strength, < δρ(x) >y and < δ|B(x)| >y, respectively, and of
the electric field < ex(x) >y at time tΩci = 30 (t = 0.83τ∗).

can be found for given initial conditions ψ(x, y, 0) and
∂ψ(x, y, 0)/∂t, and by transforming back from Fourier
to real space. We have solved eq. (6)-(7) with a 3rd
order Runge Kutta scheme and pseudo-spectral method
and eq. (8) by using eq. (2)-(4) as initial conditions, and
we did not find significant quantitative differences. In
Fig. 8 we show the nonlinear solution to eq. (6)-(7) for
di = 0.25. Note that changing di introduces a rescal-
ing of time included into τ∗, so that the plot in Fig. 8
can be compared with run 1 and run 3 as well (Fig. 3).
As can be seen, the model reproduces quite well the ob-
served evolution for run 1 and run 3, although the full

FIG. 7. Hybrid run. Top panel: contour plot of <
δf(x, v‖, v⊥) >x at tΩci = 2000. Bottom panel: averaged
distribution function < f(x,v, t) >x,vy,vz as a function of vx
at t = 0 and tΩci = 2000 (t = 55τ∗).

Hall-MHD system evolves somewhat slower, by about a
factor of two. Nevertheless, the main features of the long-
term evolution, in particular wave dispersion along and
across the guiding field that characterizes all of our sim-
ulations, can be recognized in this simple model and can
therefore be ascribed to the Hall effect. This model does
not capture entirely the evolution of run 2a and run 2b,
where departures from equipartition of magnetic and ki-
netic energy are larger, and where compressible effects
are in general more important.

In summary, the role of the Hall effect is twofold.
When dispersion is weak, `/di � 1, the Hall term de-
termines a slow dispersion of the initial wave packet that
starts to affect its dynamics after a characteristic time τ∗.
When dispersion becomes stronger, `/di & 1, departures
from MHD are larger and thus the initial wave packet
couples with compressible and other dispersive modes at
times t < τ∗, before dispersing at about t ' τ∗. Such a
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FIG. 8. Solution to eq. (6)-(7). Top panel: contour plot of
Bx(x, Ly/2, t). Bottom panel: contour plot of By(x, Ly/2, t).
Only a portion of the spatial domain is shown.

coupling with compressible modes, mediated by disper-
sion, leads to an increase of internal energy.

Our results are remarkably different from Hall-MHD
and hybrid simulations of 1D Alfvén waves (broadband or
monochromatic) and solitons. Previous work has shown
that dispersion can cause modulational instabilities and
wave steepening and collapse when a plane geometry is
adopted for the fluctuation3,14,25,37. Our work instead
shows that the evolution of a 2D (non-plane) wave packet,
in quasi-parallel propagation, differs significantly from
its 1D counterpart (at least without initial strong am-
plitude modulations). First, just like without dispersion,
a localized wave packet tends to be more stable than
an equivalent large amplitude plane wave. Second, the
two-dimensional dynamics allows for additional channels
for wave evolution, inhibiting strong field aligned wave
steepening. As a result, the overall evolution appears
to be determined mainly by the Hall electric field lead-
ing to dispersion along and across the mean field. A
field aligned beam, a signature of steepened Alfvén wave
fronts14,25, does not form in the case considered here.
Instead, a wave-particle resonance is triggered by forced
compressible modes, leading to parallel heating.

We conclude by comparing the rate of change of the
internal energy (either parallel or mean internal energy)
resulting from the coupling with compressible modes
with the rates of internal energy change estimated from
observations16. In particular, observations show that
parallel pressure increases with radial distance after R &
0.6 au. We therefore provide an order of magnitude
estimate of the heating rates by taking typical values
of density and temperature at R ' 0.6 au. By us-
ing results from run 2b we can estimate ∆pxx/∆t '
pxx(0) × 0.002/(2000Ω−1ci ). With a number density of
n ' 7.7 × 106m−3 at R = 0.6 au, parallel temper-
ature T‖ ' 355764K, and 2π/Ωci ' 1 s, we obtain

∆pxx/∆t ' 2×10−16Wm−3. Such a value is of the same
order of magnitude of the parallel heating rate extrapo-
lated from in-situ data at R ≥ 0.6 − 0.7 au16. A sim-
ilar estimate for the total internal energy increase rate
from run 2a, with T ' 364845K at R = 0.6 au, gives
∆eT /∆t ' 4 × 10−16Wm−3, still of the same order of
the observational extrapolation. This estimate provides
a lower limit, in the sense that a larger amplitude wave
packet can transfer more of its energy to internal en-
ergy. While this comparison is encouraging and suggests
that dispersion of large amplitude wave packets can pro-
vide the required heating rates, perpendicular heating,
which represents the dominant contribution to the so-
lar wind heating rate, in particular for R < 0.6 au16, is
not observed in our simulations. Dispersion in the trans-
verse direction of the wave packet however may impact
the turbulent cascade and thus, indirectly, perpendicular
heating when a fully turbulent plasma is considered.

B. Implications for switchbacks observations

Even if switchbacks are generally within the inertial
range of scales, dispersive effects can still be non neg-
ligible for switchbacks at smaller scales (`x,y/di & 1),
or, as our results show, affect the evolution of those at
larger scales (`x,ydi � 1) over sufficiently long times. To
provide context, we show in Fig. 9 the probability dis-
tribution of the length of switchbacks p(`), where ` is
expressed in units of km (top panel) and of the ion in-
ertial length (bottom panel), for distances from the sun
R = 0.06 − 1 au. Details on the datasets and methods
can be found in the Appendix. Our simulations cover
the first decade of the distribution shown in the bottom
panel of Fig. 9.

In prior work we determined that, in MHD, parametric
decay can take a time of up to several hundreds of Alfvén
times before destroying the switchbacks, if the wind is
“quiet” (large system size)42. Here we have shown that
if a wave packet is stable with respect to parametric in-
stabilities, then dispersive effects determine the time evo-
lution of the wave packet. For example, if a switchback
is stable over a few hundreds of Alfvén times, we ex-
pect the dispersive timescale τ∗ to be shorter than that
of parametric instabilities for those switchbacks of size
`/di . 100. Switchbacks of duration δt in the range
δt ' 10 − 100 s in a wind with speed Vsw = 500 km/s
have an approximate size of ` ' (0.5 − 5) × 104 km
and `/di ' (0.5 − 5) × 100 at a radial distance of
R ' 0.1−0.2 au (cfr. Fig. 9). With a mean Alfvén speed
of about va ' 50 km/s we obtain τ∗ ' (5−500)×103 s, in-
dependent from radial distance. Dispersive effects should
start to degrade those switchbacks over a distance of
∆R ' Vswτ

∗. By taking Vsw ' 500 km/s, we obtain
a corresponding range of ∆R ' 0.017 − 1.67 au. Note
that the large variation in ∆R is due to the fact that
τ∗ ∝ `2. Nevertheless, this estimate indicates that there
should be a subset of switchbacks undergoing dispersion
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FIG. 9. Probability distribution of the length of switchbacks
at radial distances 0.06 < R < 1 au in units of km (top panel)
or ion inertial length (bottom panel). The inset plots show
the scatterplot of ` and `/di, respectively, as a function of R
(in gray), and the mean value for each radial bin is shown
in red.

within 1 au.
Our kinetic and weakly dispersive fluid simulations

show that while waves are emitted from the leading and
trailing edge of the wave packet, causing a fast dispersion
of the transverse components (i.e., tangential and normal
in RTN coordinates), the longitudinal (i.e., radial) per-
turbation persists for several tens of τ∗. Thus, dispersive
effects on switchbacks could result in a defined field re-
versal in the radial direction with wave activity at its
boundaries, including strong perturbations in magnetic
pressure, and associated with large amplitude transverse
waves. We conclude by noting that it may be interest-
ing to investigate in-situ signatures of wave-particle res-
onances such as those reported in our hybrid simulation
via the field-particle correlation technique21.

V. SUMMARY

We have considered dispersive and kinetic effects on
a 2D Alfvén wave packet with constant magnetic field
pressure similar to a switchback in a low-β plasma. This
complements our previous work where the parametric de-

cay of a 2D switchback was investigated in MHD. Our
results can be summarized as follows:

• Dispersion due to the Hall term introduces a char-
acteristic time τ∗ = τa`/di, where ` is the wave
packet’s smallest scale (parallel, `x, or transverse,
`y, to the guiding field), τa = `x/va and di the
proton inertial length.

• If `/di � 1, dispersion of the initial wave packet
starts to affect its dynamics after a time t ' τ∗.

• If `/di & 1 the wave packet couples with com-
pressible and other dispersive modes at early times
t < τ∗. The wave packet then starts to disperse
and disrupt at time t ' τ∗.

• In the Hall-MHD model, coupling with compress-
ible modes leads to the gradual conversion of the
wave packet’s kinetic and magnetic energy into in-
ternal energy.

• When proton kinetic effects are included, the gen-
eration of dispersive waves and slow-modes is in-
hibited. Compressible fast modes are emitted by
the wave packet, which undergo Landau resonance
at the Alfvén speed leading to parallel heating.

• The resulting heating rates (parallel and total) are
estimated to be of about the same order of the heat-
ing rates estimated from fast solar wind observa-
tions at R ' 0.6 au.

• Observationally, we expect that the shortest
switchbacks, of duration δt . 100 s, display sig-
natures of fast-modes and dispersive waves prop-
agating from their leading and trailing edge, both
along the radial and transverse directions.

VI. APPENDIX

The plots shown in Fig. 9 were obtained by combining
PSP data at radial distances 0.06 < R < 0.5 au (E1-E12)
with data from Solar Orbiter at distances 0.5 < R < 1 au
(between June 1, 2018 to March 1, 2022). We have used
Level 2 magnetic field measurements from the Flux Gate
Magnetometer (FGM)2 onboard PSP, as well as Level 3
plasma moment data from the Solar Probe Cup (SPC)
for E1-E8, and Solar Probe Analyzer (SPAN) part of
the Solar Wind Electron, Alpha and Proton (SWEAP)
suite for E9-E1220. The plasma data are comprised of
moments of the distribution function including the pro-
ton velocity vector Vp, number density np, and temper-
ature Tp. When available, electron number density data
derived from the quasi-thermal noise from the FIELDS
instrument28, have been used for estimating proton num-
ber density. In order to get the proton density from the
electron density, one must consider charge neutrality, and
consequently a ≈ 4% abundance of alpha particles. Ac-
cordingly, electron density from QTN has been divided by
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1.08. For Solar Orbiter data, we used magnetic field mea-
surements from the Magnetometer (MAG) instrument19

and particle moments from the Proton and Alpha Parti-
cle Sensor (SWA-PAS) onboard the Solar Wind Analyser
(SWA) suite of instruments29.

Starting from this dataset, we have then identified and
removed heliospheric current sheet crossings and mag-
netic field data were resampled at 1 second resolution.
We have then determined the duration δt of field rever-
sals. These are defined as those time intervals in which

θsb ≡ arccos(B· < B >/(|B|| < B > |)) > π/2, (9)

where here we have calculated the mean magnetic field
< B > over a time interval ∆t = 8 h. We defer the reader
to Tenerani et al. 43 for details on the identification
process of switchbacks. For each identified switchback,
we have determined the field reversal duration δt, the
mean solar wind radial velocity Vr, va and di. Assuming
that switchbacks are advected at the solar wind speed in
the radial direction, we have then defined δ` = δt|Vr +
va − Vsc| with Vsc the spacecraft speed.
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